projects
A growing collection of my cool projects.
The soft lattice modules are capable of independent locomotion, and can also join with other modules to achieve collective, self-assembled, larger scale tasks such as collective locomotion and moving an object across the surface of the lattice assembly. This work represents a preliminary step toward soft modular systems capable of independent and collective behaviors, and provide a platform for future studies on distributed control.
In this paper, we present a soft modular block inspired by tensegrity structures that can form load-bearing structures through self-assembly. The block comprises a stellated compliant skeleton, shape memory alloy muscles, and permanent magnet connectors. We classify five deformation primitives for individual blocks (bend, compress, stretch, stand, and shrink), which can be combined across modules to reason about full-lattice deformation. Hierarchical function is abundant in nature and in human-designed systems. Using multiple self-assembled lattices, we demonstrate the formation and actuation of 3-dimensional shapes, including a load-bearing pop-up tent, a self-assembled wheel, a quadruped, a block-based robotic arm with gripper, and non-prehensile manipulation. To our knowledge, this is the first example of active deformable modules (blocks) that can reconfigure into different load-bearing structures on-demand.